
CA3DMM: A New Algorithm Based on a Unified
View of Parallel Matrix Multiplication

Hua Huang
School of Computational Science and Engineering

Georgia Institute of Technology
Atlanta, Georgia, U.S.A.
huangh223@gatech.edu

Edmond Chow
School of Computational Science and Engineering

Georgia Institute of Technology
Atlanta, Georgia, U.S.A.

echow@cc.gatech.edu

Abstract—This paper presents the Communication-Avoiding
3D Matrix Multiplication (CA3DMM) algorithm, a simple and
novel algorithm that has optimal or near-optimal communication
cost. CA3DMM is based on a unified view of parallel matrix
multiplication. Such a view generalizes 1D, 2D, and 3D matrix
multiplication algorithms to reduce the data exchange volume
for different shapes of input matrices. CA3DMM further
minimizes the actual communication costs by carefully organizing
its communication patterns. CA3DMM is much simpler than
some other generalized 3D algorithms, and CA3DMM does
not require low-level optimization. Numerical experiments show
that CA3DMM has good parallel scalability and has similar or
better performance when compared to state-of-the-art PGEMM
implementations for a wide range of matrix dimensions and
number of processes.

Index Terms—matrix multiplication, communication
optimization, parallel algorithm, high-performance computing

I. INTRODUCTION

Matrix-matrix multiplication (MM) is one of the most
fundamental computational kernels in scientific computing.
It is used in linear algebra algorithms [1, 2, 3], graph
processing [4, 5], computational chemistry [6, 7, 8, 9], and
other domains. Accelerating matrix multiplication routines is
of great importance and is widely studied.

The calculations in matrix multiplication have plenty
of parallelism and highlight the importance of efficiently
using parallel resources for obtaining high-performance. On
distributed-memory platforms, the cost of transferring data
between processing units (communication) has for a long time
become relatively more expensive than arithmetic operations
(computation). Therefore, minimizing communication costs
in distributed-memory parallel algorithms is in the spotlight.
In this work, we focus on minimizing communication costs
for distributed-memory parallel dense general matrix-matrix
multiplication (PGEMM).

Many algorithms have been proposed for reducing the
data transfer size in PGEMM. The PGEMM communication
cost lower bound has been discussed in multiple works [10,
11, 12, 13]. The widely used SUMMA algorithm [14]
achieves optimal communication complexity for certain matrix
dimensions or if no extra memory is present. With extra
memory, 3D [15] and 2.5D [16] algorithms can achieve
the communication cost lower-bound for matrix dimensions

m, n, and k (see (1)) in certain ranges [17, 18]. The
CARMA algorithm [17] was the first to generalize 1D,
2D, and 3D algorithms with recursive dimension-splitting to
achieve an asymptotic communication lower bound for any
matrix dimensions. The COSMA algorithm [18] adopted a
new approach for finding a communication-optimal PGEMM
parallelization scheme. COSMA achieves the communication
cost lower bound (not just asymptotically) for any matrix
dimensions and any number of processes.

Unfortunately, state-of-the-art PGEMM algorithms still have
their obvious limitations. SUMMA is easy to understand
and is widely used in linear algebra libraries, but it cannot
utilize extra memory to reduce communication costs. CARMA
requires the number of processes to be a power of two and
requires special matrix distributions for its distributed-memory
version. Such limitations make it extremely hard to use
CARMA in real-world applications. As for COSMA, only its
high-level principles and ideas are described in the literature,
and implementing these ideas is complicated.

The comparison between CARMA and COSMA in [18]
also indicates an important issue. When then number of
processes is a power of two, CARMA and COSMA use the
same 3D process grid and therefore have the same theoretical
communication cost for many matrix dimensions and numbers
of processes, but COSMA usually performs better than
CARMA. Having the optimal process grid and reaching the
theoretical communication cost lower bound are necessary but
not sufficient conditions for achieving the best performance.
Matrix partitioning and the resulting communication patterns
have very large impacts on the performance of PGEMM. They
should be analyzed and designed carefully to achieve high
performance.

In this paper, we present the Communication-Avoiding
3D Matrix Multiplication (CA3DMM) algorithm, a novel
PGEMM algorithm that achieves the communication cost
lower bound with a simple but efficient approach. CA3DMM
first computes an optimal or near-optimal 3D process grid
based on the dimensions of the input matrices. Then
CA3DMM performs the matrix multiplication using multiple
low-rank updates. Both the calculations in each low-rank
update and the computations of different low-rank updates
are parallelized. In contrast, SUMMA [14] performs different

SC22, November 13-18, 2022, Dallas, Texas, USA
978-1-6654-5444-5/22/$31.00 ©2022 IEEE

low-rank updates sequentially, although each low-rank update
is performed in parallel. CA3DMM is based on a unified
view of distributed matrix multiplication that generalizes 1D,
2D, and 3D algorithms, so CA3DMM can be reduced to
1D, 2D, or 3D algorithms in different cases. Numerical
experiments show that CA3DMM has good parallel scalability
and has similar or better performance when compared to
state-of-the-art PGEMM implementations for a wide range of
matrix dimensions and number of processes.

II. BACKGROUND

Consider a general dense matrix-matrix multiplication

C = A×B, A ∈ Rm×k, B ∈ Rk×n, C ∈ Rm×n. (1)

PGEMM algorithms can be categorized into 1D, 2D, and 3D
(2.5D) algorithms.

1D algorithms partition only the m-dimension,
n-dimension, or the k-dimension of (1). If the m-dimension /
n-dimension is partitioned, matrix B / A will be replicated in
the algorithm. If the k-dimension is partitioned, a reduction
operation is needed to obtain the final C matrix. Matrix
multiplications involving tall-and-skinny matrices usually use
1D algorithms.

2D algorithms partition A, B, and C matrices in 2D and
organize processes in a 2D grid. The first 2D algorithm
was proposed by Cannon [19], which works for square
process grids. Later, the PUMMA algorithm [20] was
developed and supported rectangular matrices, transposed
matrices, non-square 2D process grids, and different
matrix distribution layouts. The SUMMA algorithm [14]
further reduced communication costs with communication-
computation overlap. SUMMA is the most widely-used
(2D) algorithm and it is implemented in the ScaLAPACK
library [21] and the SLATE library [22].

2D algorithms can be viewed as applying a 2D partitioning
to the C matrix and computing each block of the C matrix
with only one process. The original 3D algorithm [15] and
the 2.5D algorithm [16] further extract parallelism from the
“k-dimension of computation” and reduce communication
costs. In the original 3D algorithm and the 2.5D algorithm,
a 2D partition is still applied to the C matrix, but two or
more processes compute the partial results of the same C
matrix block and use reduce-sum to obtain the final result. The
original 3D algorithm uses a cuboidal process grid and a 3D
partitioning of work. It uses more memory than 2D algorithms
since A and B are replicated across the m-dimension and
the n-dimension of the process grid, respectively, and C has
multiple partial results across the k-dimension. Compared to
2D algorithms, the communication cost of the original 3D
algorithm is reduced from O(N2/P 1/2) to O(N2/P 2/3),
where N is the (square) matrix dimension, and P is the
number of processes. As a trade-off, the memory requirement
of the original 3D algorithm increases from O(N2/P) to
O(N2/P 2/3). The 2.5D algorithm bridges the gap between
2D and the original 3D algorithm by introducing a parameter c

to control the number of replicated copies of the input matrices
for use in the original 3D algorithm.

However, the original 3D algorithm and the 2.5D algorithm
are not optimal for all matrix dimensions. Demmel et
al. showed that these approaches usually perform poorly
when one of the matrix dimensions is much larger than
the other two dimensions [17]. The authors then proposed
CARMA, a recursive algorithm that achieves asymptotic
communication cost lower bounds for all dimension and
memory size configurations. In each step, CARMA bisects
the largest dimension of the current problem and assigns each
resulting subproblem to half of the processes. The process
is continued recursively until a single process is assigned to
each subproblem. Each bisection corresponds to a replication
of an A or B matrix block, or an all-reduction of a C matrix
block. This recursive bisection approach requires the number
of processes to be a power of two and also requires special
matrix distributions in any MPI implementation. These factors
limit the application of CARMA in practice.

Recently, Kwasniewski et al. proposed COSMA [18],
a communication optimal PGEMM algorithm for all
combinations of parameters. COSMA uses a “bottom-up”
approach to minimize the total number of words transferred
during the matrix multiplication. It first finds an optimal
or near-optimal sequential matrix multiplication strategy
“by explicitly modeling data reuse in the red-blue pebble
game”. Then, an optimal parallel scheme is derived from
the sequential scheme by solving an optimization problem.
COSMA implements its own binary broadcast tree to take
advantage of their special data layout and utilizes one-sided
asynchronous communication operations to further reduce its
communication latency.

The 2.5D matrix multiplication algorithm [23], using any
number of processes, is implemented in the Cyclops Tensor
Framework (CTF) [24] for parallel tensor calculations. CTF
is optimized for distributed-memory dense and sparse tensor
operations.

III. THE CA3DMM ALGORITHM

In this section, we present the Communication-Avoiding
3D Matrix Multiplication (CA3DMM) algorithm, a PGEMM
algorithm based on a unified view of parallel matrix
multiplication. CA3DMM works for all combinations of
matrix dimensions and process numbers. CA3DMM is
designed with a top-down approach, so it is easy to understand
and implement. Meanwhile, CA3DMM achieves optimal or
near-optimal communication costs with the same memory
usage as the original 3D algorithm.

A. A Unified View of MM and the Minimal Communication
Parallelization

In this work, we do not consider possible special properties
(for example, symmetry) of A, B, and C matrices. We only
discuss real matrices here for convenience, and the conclusions
can be applied to complex matrix multiplication. We do not

discuss fast matrix multiplication algorithms, for example, the
Strassen algorithm [25].

The number of arithmetic operations (scalar additions and
multiplications) and the number of matrix elements to be
loaded and updated correspond to the volume and surface area
of an m× k × n cuboid, respectively. On the cuboid, we call
an m × k face an “A-face”, a k × n face a “B-face”, and an
m × n face a “C-face”. A subdomain (cuboid block) of the
cuboid corresponds to a sub-task in 3D matrix multiplication.
The projections of a subdomain on the A-face, B-face, and
C-face correspond, respectively, to the A and B matrix blocks
required for computing a C matrix block. Figure 1 illustrates
the connection between matrix multiplication and a cuboid.

Based on the cuboid view of MM, the parallelization
of a MM is equivalent to partitioning the cuboid into
multiple subdomains and assigning subdomains to processes.
To balance the flops across processes, the total volume of
the subdomains on each process should be mnk/P . The total
number of matrix elements to be transferred (read and updated)
by all processes equals half of the sum of all subdomains’
surface area minus the area of A, B, and C. We ignore the
subtracted term in our analysis since it is a constant. We
assume that A and B are distributed on all P processes at
the beginning, and C is distributed on all P processes at the
end. In other words, all P processes together have only one
copy of A and B at the beginning, and only one copy of C at
the end. This assumption holds for all existing 2D, 2.5D, and
3D algorithms.

Denote the size of a 3D process grid as pm × pk ×
pn, where positive integers pm, pk, pn denote the number
of processes along the m-dimension, k-dimension, and n-
dimension, respectively. We further assume each process has
only one subdomain. Having two or more subdomains on
each process with the same total volume will have larger
total surface area. The size of the subdomains along the m-
dimension will be either dm/pme or bm/pmc, and similarly
for the n-dimension and k-dimension. To minimize the total
number of transferred matrix elements, we need to minimize
the total surface area of all the subdomains. Among cuboids
that have the same volume, the perfect cube has the smallest
surface area. Since the total volume of each subdomain is fixed
as mnk/P , we want to make the shape of each subdomain as
close to a cube as possible. Denote dm = m/pm, dk = k/pk,
dn = n/pn. For convenience of analysis, we assume dm, dk,
and dn are integers. When

dm = dk = dn =

(
mnk

P

)1/3

, (2)

a subdomain has the minimal surface area 6(mnk)2/3P−2/3,
and the sum of all subdomains’ surface area is

Stotal = 6(mnk)2/3P 1/3. (3)

In practice, one can enumerate all possible process grid sizes
pm × pk × pn and find the optimal solution that minimizes
the sum of all subdomains’ surface area. Combined with the

complexity analysis in Section III-D, (3) matches the I/O
complexity lower bound in [10].

For some values of P , for example, prime numbers, it is
impossible to find a good 2D or 3D process grid size that
achieves near-optimal communication cost. Previous studies
have shown that the performance of PGEMM is bound by
communication when scaling to a large number of processes,
even if communication-optimal algorithms are used. Thus, a
PGEMM algorithm can allow some processes to be idle in
matrix multiplication, making the communication cost close
to optimal with a small extra computation cost. This technique
was recently used in the COSMA algorithm [18].

B. The CA3DMM Algorithm: Communication Patterns and
Matrix Partitionings

The CA3DMM algorithm is based on the aforementioned
unified view of matrix multiplication and 3D process
grid selection. In CA3DMM, we enumerate all possible
pm × pk × pk combinations and find a solution that minimizes

Stotal = 2(pmkn+ pnmk + pkmn) (4)

with constraint

l · P ≤ pm × pk × pn ≤ P, (5)

where l = 0.95 is a tunable parameter. Using a larger l allows
fewer processes to be idle but also makes it harder to find a
valid solution under the constraint. A sub-target

max pm × pk × pn (6)

is also used to maximize the utilization of processes but its
priority is lower than that of (4).

Having an optimal or near-optimal 3D process grid is
just half of building the CA3DMM algorithm. Different
communication patterns can be used for the same process
grid, and their communication costs can be very different.
We interpret the 3D process grid with a unified view of
parallel matrix multiplication: a matrix multiplication is pk
independent rank-(k/pk) updates to a zero matrix. More
precisely, each set of pm× pn processes forms a k-task group
and computes a rank-(k/pk) update using a 2D algorithm.
Then, all k-task groups reduce-sum pk rank-(k/pk) updates
to obtain the final C matrix. This view of parallel matrix
multiplication is a unified view since it can fall back to
optimal 2D or 1D algorithms if necessary. Even for degenerate
problems, for example, rank-1 update (k = 1), matrix-vector
product (n = 1 or m = 1), and vector inner product
(m = n = 1), the obtained algorithms are the same as the
optimal algorithms.

We use Cannon’s algorithm [19] in CA3DMM to compute
rank-(k/pk) updates. Section III-E further discusses the choice
of the 2D algorithm. The original Cannon’s algorithm only
works with a square process grid, so it is usually not
possible to directly use the original Cannon’s algorithm in
a k-task group. The generalized Cannon’s algorithm [26]
(GCA) is a possible solution. However, GCA is designed
for block-cyclic distributed matrices and it also has some

A

B

C

𝑘 𝑚 𝑛
𝑘

A 𝑚𝑘
𝑘

𝑛
B

C C

A

B

𝑚 𝑛𝑘
Sum on

k-dim

C

A

B

𝑚 𝑛𝑘
Sum on

k-dim

Fig. 1: Illustration of the connection between matrix multiplication and a cuboid. A unit volume in the cuboid corresponds to
one scalar multiplication and addition. The surface area of a cuboid subdomain corresponds to the number of A and B matrix
elements to be loaded and the number of C matrix elements to be updated.

restrictions on the matrix dimensions. Instead of using GCA,
we add an intermediate layer between the k-task group and the
original Cannon’s algorithm by allowing CA3DMM to use a
sub-optimal 3D process grid. We add a constraint to the 3D
grid size:

mod(max(pm, pn), min(pm, pn)) = 0. (7)

Each k-task group is further split into

c = max(pm, pn)/min(pm, pn) (8)

Cannon groups with s2 processes in each Cannon group,
s = min(pm, pn). A block of A or B is replicated c times
across Cannon groups in a k-task group. If c = 1, the
initial distributions of A and B in each k-task group are the
distributions of the original Cannon’s algorithm. If c > 1
and A / B need to be replicated, each A / B matrix block
in the original Cannon’s algorithm initial distribution for c2

processes is further row-partitioned or column-partitioned into
c sub-blocks. Each process in a k-task group stores a sub-block
of A / B and a block of A / B initially. Then A / B is
replicated by using an allgather operation before performing
Cannon’s algorithm. This scheme guarantees that A and B
are 2D partitioned among all P processes initially. It also
balances the memory usage for storing the initial A and B.
In Cannon’s algorithm, each process first sends its A and B
blocks to two processes in the same process row and column
(the “initial skewing”). In the first s − 1 steps, each process
circularly shifts its current A and B blocks to its left and

upper neighbor processes, respectively. Therefore, Cannon’s
algorithm only requires neighbor communications with fixed
patterns.

The reduce-sum of pk rank-(k/pk) updates is simple and
independent of the choice of 2D algorithm. All pk processes
having the partial results of the same C block reduce-scatter
sum (equivalent to first reduce-summing the message, then
scattering the results) their partial results, and the final
C block is row-partitioned or column-partitioned into pk
sub-blocks. This scheme also guarantees the final C matrix
is 2D partitioned among all pm × pk × pn active processes.

We provide three simple examples to help the reader
understand the initial and final partitioning of matrices in
CA3DMM. We use MATLAB colon notation to indicate
matrix blocks in the examples.

Example 1. m = 32, k = 16, n = 64, P = 8. The
optimal process grid is pm = 2, pk = 1, pn = 4. Since
pk = 1, CA3DMM falls back to 2D Cannon’s algorithm.
Since c = pn/pm = 2, matrix A needs to be replicated. Block
A(1 : 16, 1 : 16) is replicated across processes P1 and P5,
initially P1 has A(1 : 16, 1 : 8) and P5 has A(1 : 16, 9 : 16).
Similarly, block A(17 : 32, 1 : 16) is replicated across P2

and P6, initially P2 has A(17 : 32, 1 : 8) and P6 has
A(17 : 32, 9 : 16). Figure 2a shows the complete partitionings.

Example 2. m = n = 32, k = 64, P = 16. The optimal
process grid is pm = pn = 2, pk = 4. Processes P1≤i≤4 form
the first k-task group and compute A(:, 1 : 16)×B(1 : 16, :),
processes P5≤i≤8 form the second k-task group and compute

P

1

P

5

P

3

P

7

P

2

P

6

P

4

P

8

𝐴
P1

P2

P3

P4

P5

P6

P7

P8

𝐵
P1

P2

P3

P4

P5

P6

P7

P8𝐶
16

8

16

(a) m = 32, k = 16, n = 64, P = 8, pm = 2, pk = 1, pn = 4

k-task group 1

k-task group 2

k-task group 3

k-task group 4𝐵k-task

group

1

k-task

group

2

k-task

group

3

k-task

group

4𝐴
16

32

32

P

6

P

5

P

8

P

7
16

8 P6

P5

P8

P7

16

8

16

16

P1, P5,

P9, P13

𝐶
P3, P7,

P11,

P15

P2, P6,

P10,

P14

P4, P8,

P12,

P16

P1 P5 P9
P

13 16

4

(zoom in)

(b) m = n = 32, k = 64, P = 16, pm = pn = 2, pk = 4

Fig. 2: CA3DMM initial and final matrix partitioning examples.

A(:, 17 : 32) × B(17 : 32, :), and so on. Processes
P1, P5, P9, P13 have partial results of C(1 : 16, 1 : 16). After
reduce-scatter, P1 has the final C(1 : 16, 1 : 4), P5 has the
final C(1 : 16, 5 : 8), P9 has the final C(1 : 16, 9 : 12), and
P13 has the final C(1 : 16, 13 : 16). Figure 2b shows the
complete partitionings.

Example 3. m = n = 32, k = 64, P = 17. The optimal
process grid is pm = pn = 2, pk = 4. Processes P17 only
participates in matrix redistribution. Processes P1≤i≤16 have
the same roles as in Example 2.

The initial and final distributions of A, B, and C matrices
in CA3DMM are 2D distributions, but these distributions are
usually unable to map to a natural row-major or column-major
2D process grid. In any case, the applications using CA3DMM
may have different matrix distributions, so the matrices need
to be redistributed before and after calling CA3DMM. Such
matrix layout conversions are common in 3D and 2.5D
algorithms. The original 3D algorithm and the 2.5D algorithm
use natural 2D distributions of A, B, and C. However, the
matrices are only stored on a subset of processes. CARMA and
COSMA also have algorithm-specific initial and final matrix
distributions. COSMA supports user-defined input and output
matrix partitionings and the 2D block cyclic partitioning used
in ScaLAPACK with an internal matrix redistribution library.
CA3DMM also adopts a small subroutine to redistribute the
input A and B matrices from user-defined distributions to
CA3DMM initial distributions and to redistribute the final
C matrix to the user-defined distribution. Further, CA3DMM
utilizes the redistribution steps of A and B for computing

C = op(A)× op(B), op() = transpose or no-transpose.

We note that distributed matrix layout conversion and handling
the transpose operation in PGEMM are not the major concerns
in this work, so the matrix redistribution subroutine in
CA3DMM is not fully optimized. We leave this as a topic
for future study.

Algorithm 1 shows the complete CA3DMM algorithm. For
simplicity, CA3DMM organizes the pm× pn× pk 3D process
grid in a “column-major” way, i.e., all MPI processes in
the same k-task group and the same Cannon group have
contiguous MPI ranks. We note that Figure 2 shows the
partitionings of A and B matrices after the redistribution
(step 2 in Algorithm 1) and the partitioning of C before the
redistribution (step 8 in Algorithm 1).

Algorithm 1 CA3DMM algorithm

Input: 1D or 2D partitioned A and B matrices distributed on
P processes

Output: 2D partitioned C = op(A) × op(B) distributed on
P processes

1: Find 3D process grid pm×pk×pn by minimizing (4) and
maximizing (6) with constraints (5) and (7).

2: Organize the first pm × pk × pn processes as pk k-task
group(s), each active process computes its required initial
block of A and B matrices and the final C matrix block.
The last P −pm×pk×pn process(es) remain idle outside
the redistribution steps.

3: Each k-task group organizes its pm×pn processes as c =
max(pm, pn)/min(pm, pn) Cannon group(s).

4: All P processes participate in the redistribution of A and
B matrices.

5: Replicate a block of A or B in each k-task group using
allgather if c > 1.

6: Each Cannon group performs Cannon’s algorithm to
compute a partial result of a C block.

7: For each group of pk process(es) holding partial results of
the same C block, form the final C matrix blocks using
reduce-scatter if pk > 1.

8: All P processes participate in the redistribution of the C
matrix.

C. Differences Between COSMA and CA3DMM

Both COSMA and CA3DMM have optimal or near-optimal
communication costs for all matrix dimensions and any
number of processes. In many cases, COSMA and CA3DMM
may use the same optimal 3D process grid, but COSMA and
CA3DMM organize the communication and computation in
different ways. We discuss the differences between COSMA
and CA3DMM in this section.

To compare COSMA with CA3DMM, we first analyze
the actual behaviors of the COSMA source code since
the COSMA paper only discusses the high-level ideas
without presenting detailed operations. The actual behaviors
in the COSMA source code are very similar to the
CARMA algorithm. In some sense, the COSMA source
code can be considered as a generalized CARMA algorithm
implementation.

The COSMA source code first finds an optimal
or near-optimal 3D process grid pm × pk × pn s.t.
m/pm ≈ k/pk ≈ n/pn by enumerating all possible solutions.
It does not explicitly solve an optimization problem described
in the COSMA paper to find a optimal subdomain of size
a × b × a, where m/pm = n/pn = a and k/pk = b.
Then, the COSMA source code factorizes pm, pn, and pk
to obtain its parallel strategy containing one or multiple
steps. Consider Example 2 in Section III-B. The COSMA
source code generates a parallel strategy with three steps: (1)
k-dimension splitting of size 4, (2) m-dimension splitting of
size 2, and (3) n-dimension splitting of size 2. CARMA only
bisects the largest dimension of the current problem and the
process group in each step. COSMA generalizes the bisection
and partitions the largest dimension of the current problem
into multiple parts. Correspondingly, COSMA replaces the
point-to-point communications in CARMA with collective
operations. Specifically, in each step, if the m / n dimension is
partitioned into s parts, COSMA uses an all-gather operation
involving s processes to replicate the B / A matrix; if the
k dimension is partitioned into s parts, COSMA uses a
reduce-scatter operation involving s processes for s partial C
matrix results and obtains a final C matrix or another partial
C result.

In general, COSMA first replicates A and/or B in one or
multiple steps using all-gather operations, then calculates one
local matrix multiplication to obtain a partial C result block
on each process, and finally reduces the partial C results to
get the final C matrix. The original 3D algorithm follows
the same procedure, but it uses one broadcast operation to
replicate A and one broadcast operation to replicate B. In
contrast, CA3DMM does not complete all replications of A
and/or B before local computations. CA3DMM organizes
a parallel matrix multiplication as multiple independent
low-rank updates. The communications and computations in
each low-rank update are pipelined and overlapped in the
Cannon’s algorithm stage. The partial C result reduction in
CA3DMM is the same as that in COSMA.

D. Complexity Analysis of CA3DMM

In this section, we analyze the communication size,
communication latency, and memory usage of CA3DMM. We
assume pm × pk × pn = P , min(pm, pn, pk) > 1, and
(4) equals 1. We further assume butterfly network collectives
for communication size and latency analysis [27], which are
optimal or near-optimal in the α − β model. The cost of
collective operations (assuming “large” messages) used in the
analysis are listed here, where n is the message size, P is
the number of processes, α is network latency, and β is the
inverse of network bandwidth:

Tallgather(n, P) = α log2(P) + βn
P − 1

P
,

Tbroadcast(n, P) = α (log2(P) + P − 1) + 2βn
P − 1

P
,

Treduce−scatter(n, P) = α(P − 1) + βn
P − 1

P
.

We also assume that steps 4 and 8 in Algorithm 1 can be
skipped to make our cost analysis comparable to those in the
literature.

We define the communication size Q as the maximum
number of matrix elements transferred by any process in
Algorithm 1. Based on (3) and the assumptions in this section,
we immediately obtain

Q = 3

(
mnk

P

)2/3

. (9)

We define the communication latency L as the maximum
number of messages sent by any process in Algorithm 1.
Define ps = min(pm, pn). In Algorithm 1, steps 5, 6, and
7 have latency log2(c), ps, and pk− 1, respectively. Thus, the
communication latency is

L = log2(c) + ps + pk − 1. (10)

Fixing m, n, k and increasing P , (2) shows that the ratios
pm/pk, pk/pn, and c remain unchanged, so ps = uP 1/3 where
u is a constant, and thus L = O

(
P 1/3

)
.

We define the memory usage S as the maximum number
of matrix elements stored on any process in Algorithm 1.
We first assume m ≤ n. After step 4, each process stores
(mk + kn)/P elements of A and B. After step 5, A is
replicated c times, each process stores (cmk+kn)/P elements
of A and B. CA3DMM uses a dual buffer in Cannon’s
algorithm to overlap communication with computation, so
each process needs another (cmk + kn)/P elements for
the second buffer of A and B. After Cannon’s algorithm,
each k-task group has a partial result of C, so each process
stores kpmn/P elements of the partial C matrix. After
reduce-scatter, each process stores mn/P elements of the final
C matrix in the partial C matrix block buffer. Therefore, the
memory usage is

S = 2
cmk + kn

P
+
kpmn

P
. (11)

If m = n = k, then c = 1 and

S = 4m2/P +m2/P 2/3 = O(m
2

P 2/3
),

so S has the same asymptotic complexity as the memory usage
of the original 3D algorithm. For m > n, the analysis is
similar, and the conclusion remains unchanged.

E. Choosing the 2D Algorithm in CA3DMM

The 2D algorithm in CA3DMM determines the initial input
matrix distributions and the communication pattern during
the calculation. SUMMA is the conventional choice. It can
handle all 2D process grid sizes, and it is easy to implement.
We choose Cannon’s algorithm since we believe it can
outperform SUMMA in CA3DMM for most problem settings
as we explain now. Denote CA3DMM-C and CA3DMM-S
as CA3DMM using Cannon’s algorithm and SUMMA,
respectively. Assume CA3DMM-C and CA3DMM-S use the
same process grid and pm ≥ pn. Both approaches have the
same communication size Q. If we use the largest possible
panel sizes to reduce the number of communication operations
in SUMMA, we still need pm iterations, and each iteration has
a communication latency

max(log2(pm)+pm−1, log2(pn)+pn−1) = log2(pm)+pm−1

for panel broadcast. The latency of CA3DMM-S is

LSUMMA = pm (log2(pm) + pm − 1) + (pk − 1),

giving

LSUMMA − L = pm (log2(pm) + pm − 1) + (pk − 1)

− (log2(pm/pn) + pn + (pk − 1))

≥ (pm − 1) log2(pm) + p2m − pm − pn
≥ (pm − 1) log2(pm) + p2m − 2pm.

If pm = pn = 1, no 2D algorithm is needed. If pm ≥ 2,
LSUMMA − L ≥ 0. If pm < pn, the same conclusion holds.
The latency of CA3DMM-C is always not larger than the
latency of CA3DMM-S when using the same process grid. On
the other hand, CA3DMM-S does not have the constraint in
(7). The optimal grid size for CA3DMM-S may give a smaller
Q and/or a smaller L, but the new values should not be much
better than the optimal or near-optimal Q and L values in
CA3DMM-C. Considering the above discussion, we choose
CA3DMM-C instead of CA3DMM-S.

F. Implementation of CA3DMM

We implement CA3DMM in C + OpenMP + MPI. We
enumerate all possible solutions to find the optimal 3D
process grid for CA3DMM. In any practical case, the
cost of the enumeration is less than 1% of the actual
parallel matrix multiplication time. The matrix redistribution
subroutine in Algorithm 1 steps 4 and 8 simply packs
and unpacks matrix blocks and exchanges data using
MPI_Neighbor_alltoallv. This subroutine does not
have other optimizations. Algorithm 1 steps 5 and 7

use MPI_Allgather(v) and MPI_Reduce_scatter.
We use a dual-buffer in Cannon’s algorithm to overlap
communication with computation. To maintain the efficiency
of local matrix multiplication, we perform multiple shifts for
one local matrix multiplication if A and B blocks in Cannon’s
algorithm do not have a large enough k-dimension size. These
two optimizations are common for Cannon’s algorithm. Local
(shared-memory) matrix multiplications are handled by an
OpenMP-parallelized BLAS library. CA3DMM can also run
in pure MPI mode by using only one OpenMP thread per MPI
rank.

IV. NUMERICAL EXPERIMENTS

All experiments in this section are performed on the Georgia
Tech PACE-Phoenix cluster. Each CPU compute node has two
CPU sockets and 192 GB DDR4 memory. Each socket has an
Intel Xeon Gold 6226 12-core processor. Each GPU compute
node has the same CPU and memory as a CPU compute
node but also has two NVIDIA Tesla V100 GPUs. Each Tesla
V100 GPU has 16 GB HBM2 memory. Compute nodes are
connected with 100 Gbps InfiniBand networking.

A. Scalability of Different PGEMM Algorithms

We test and compare three PGEMM libraries that use
3D or 2.5D algorithms and can handle any number of
processes: COSMA, CTF, and CA3DMM. The three libraries
are compiled using Intel C/C++ compiler v19.0.5 with
optimization flags “-xHost -O3”, and use Intel MKL v19.0.5
for shared-memory matrix multiplication and MVAPICH2
2.3.2 for the MPI backend.

We test four classes of problem dimensions: (1) square,
m = n = k, (2) large-K, m = n � k, (3) large-M,
m � n = k, and (4) flat, m = n � k. Such types
of calculations are taken from real-world applications. Some
examples are the following. The square class is used in
density matrix purification and polar decomposition [7, 28].
The large-K and large-M classes are used in CholeskyQR and
Rayleigh-Ritz projection [8, 29, 30]. The flat class comes from
the trailing matrix update in matrix factorization algorithms,
for example, LU, Cholesky, and Householder QR.

Figure 3 shows the strong scaling test results for different
matrix dimensions. All three libraries use one CPU core
per MPI rank. COSMA uses communication-computation
overlap and can use unlimited extra memory. One-time
initialization costs, including finding the optimal 3D process
grid in CA3DMM, finding the optimal parallelization strategy
in COSMA, initializing MPI communicators, and allocating
work buffers, are not counted. Both “library-native” and
1D column matrix partitionings are tested for COSMA and
CA3DMM. Since the library-native matrix partitionings of
COSMA and CA3DMM are 2D partitions, the 1D column
partition aims to show the possible heavy cost of matrix
layout conversion. When using library-native matrix partitions,
COSMA and CA3DMM have good parallel scalability on all
problem classes, showing that both algorithms have optimal
or near-optimal communication costs in practice. CTF is not

8 * 24 16 * 24 32 * 24 64 * 24 128 * 24

number of cores

0

20

40

60

80

100
%

 p
e
a
k
 p

e
rf

o
rm

a
n
c
e

COSMA native layout

CA3DMM native layout

CTF native layout

COSMA custom layout

CA3DMM custom layout

(a) m = n = k = 50, 000

8 * 24 16 * 24 32 * 24 64 * 24 128 * 24

number of cores

0

20

40

60

80

100

%
 p

e
a
k
 p

e
rf

o
rm

a
n
c
e

COSMA native layout

CA3DMM native layout

CTF native layout

COSMA custom layout

CA3DMM custom layout

(b) m = n = 6, 000, k = 1, 200, 000

8 * 24 16 * 24 32 * 24 64 * 24 128 * 24

number of cores

0

20

40

60

80

100

%
 p

e
a
k
 p

e
rf

o
rm

a
n
c
e

COSMA native layout

CA3DMM native layout

CTF native layout

COSMA custom layout

CA3DMM custom layout

(c) m = 1, 200, 000, n = k = 6, 000

8 * 24 16 * 24 32 * 24 64 * 24 128 * 24

number of cores

0

20

40

60

80

100

%
 p

e
a
k
 p

e
rf

o
rm

a
n
c
e

COSMA native layout

CA3DMM native layout

CTF native layout

COSMA custom layout

CA3DMM custom layout

(d) m = n = 100, 000, k = 5, 000

Fig. 3: Strong scaling tests of COSMA, CA3DMM, and CTF for different matrix dimensions. Neither A nor B is transposed.
All tested implementations use one core per MPI process. Minimal, mean (marked line), and maximal achieved percentages
of peak performance in ten runs are shown. “Native layout” and “Custom layout” refer to the library-native and 1D column
partitionings of A, B, and C matrices, respectively.

fine tuned for matrix multiplication, so its parallel efficiency
is less satisfying. A previous study suggested that its process
grid and matrix decomposition may be far from optimal [18].
For large-K and large-M problems, COSMA and CA3DMM
have very similar performance. The major communication cost
in both algorithms is C matrix reduction for large-K and
B matrix replication for large-M, so it is reasonable that
both algorithms have similar communication costs. For square
and flat problems, CA3DMM outperforms COSMA. The
difference in process grid size may also have an impact, and
we will discuss this in Section IV-B. Figure 3b and Figure 3c
also show the high matrix layout conversion costs in COSMA
and CA3DMM when using unfavorable matrix partitionings

for tall-and-skinny matrices. Adopting library-native matrix
partitioning to reduce or avoid matrix layout conversion cost
in other parallel algorithms is a significant issue to address in
the future.

Figure 4 shows the strong scaling test results for different
matrix dimensions and parallelization modes. All three
libraries use library-native matrix partitionings, and COSMA
still uses communication-computation overlap without a
limitation on extra memory. (3) and (9) show that switching
from pure MPI parallel to MPI + OpenMP hybrid parallel
decreases the total number of words transferred between
processes but also increases per-process data transfer size. For
the square problem, both COSMA and CA3DMM have better

8 16 32 64 128

number of nodes

2

4

8

16

32

ru
n

ti
m

e
 (

s
e

c
o

n
d

s
)

COSMA MPI

COSMA MPI+OpenMP

CA3DMM MPI

CA3DMM MPI+OpenMP

CTF MPI

CTF MPI+OpenMP

(a) m = n = k = 50, 000

8 16 32 64 128

number of nodes

0.5

1

2

4

8

16

ru
n
ti
m

e
 (

s
e
c
o
n
d
s
)

COSMA MPI

COSMA MPI+OpenMP

CA3DMM MPI

CA3DMM MPI+OpenMP

CTF MPI

CTF MPI+OpenMP

(b) m = n = 6, 000, k = 1, 200, 000

8 16 32 64 128

number of nodes

0.5

1

2

4

8

16

32

48

ru
n
ti
m

e
 (

s
e
c
o
n
d
s
)

COSMA MPI

COSMA MPI+OpenMP

CA3DMM MPI

CA3DMM MPI+OpenMP

CTF MPI

CTF MPI+OpenMP

(c) m = 1, 200, 000, n = k = 6, 000

8 16 32 64 128

number of nodes

0.5

1

2

4

8

12

ru
n
ti
m

e
 (

s
e
c
o
n
d
s
)

COSMA MPI

COSMA MPI+OpenMP

CA3DMM MPI

CA3DMM MPI+OpenMP

CTF MPI

CTF MPI+OpenMP

(d) m = n = 100, 000, k = 5, 000

Fig. 4: Strong scaling tests of COSMA, CA3DMM, and CTF for different matrix dimensions and parallelization modes. Neither
A nor B is transposed. Solid lines with circle markers are pure MPI parallel (one core per MPI process, 24 MPI processes
per node) results. Dashed lines with cross markers are MPI + OpenMP parallel (24 cores per MPI process, one MPI process
per node) results. Reported values are averaged over ten runs. All libraries use their library-native matrix partitionings.

performance in pure MPI mode than in MPI + OpenMP mode.
Runtime breakdowns show that both libraries have larger
communication costs in hybrid parallel mode. One possible
reason is that the pure MPI parallel mode has a smaller
inter-node communication volume. Another possible reason is
that communication operations from different MPI processes
in the same node can overlap with each other and better
utilize inter-node network bandwidth [31]. For the large-K and
large-M problems, COSMA and CA3DMM run faster using
MPI + OpenMP parallelization. In these cases, only one type
of communication operation is performed in a much smaller
process group, leading to a much lower communication cost.

For the flat problem, COSMA and CA3DMM also have
better performance in MPI + OpenMP mode due to a smaller
communication cost. CTF has various performance behaviors
when using hybrid parallelization, which needs further study
for a better understanding.

We test different l values in the range [0.85, 0.99] for (5).
Test results show that using other l values give the same 3D
process grid as using the value l = 0.95 in almost all cases
(detailed results omitted).

Table I shows the memory usage per process (in MB) of
COSMA and CA3DMM for different problem dimensions.
For the square class problem, CA3DMM always uses less

Problem Size Number of MPI Processes
m,n, k (×103) 192 384 768 1536 3072

COSMA

50, 50, 50 2086 1242 770 484 292
6, 6, 1200 848 561 424 283 171
1200, 6, 6 848 561 424 283 171

100, 100, 5 993 616 387 293 176

CA3DMM

50, 50, 50 1490 696 398 137 106
6, 6, 1200 1987 1397 497 284 125
1200, 6, 6 1428 851 710 213 102

100, 100, 5 1797 855 433 206 128

TABLE I: COSMA and CA3DMM memory usage per process
(in MB) for different problem dimensions. COSMA has no
limitation on extra memory. Both libraries use library-native
matrix distributions.

memory than COSMA. For the other three problem classes,
CA3DMM uses more memory than COSMA when the number
of MPI processes is not very large, but the memory usage
of CA3DMM decreases more rapidly than COSMA with
the increase of number of MPI processes. CA3DMM still
uses less memory than COSMA when using more than 1536
MPI processes. Since both COSMA and CA3DMM have the
same asymptotic maximum memory usage of O(mnk/P 2/3),
CA3DMM should still use less memory than COSMA when
using more than 3072 MPI processes for these four classes
of problem dimensions. We notice that the memory usage in
CA3DMM greatly decreases in two cases: (1) large-K from
384 processes to 768 processes, and (2) large-M from 768
processes to 1536 processes. The reason for the large decreases
in these cases is the change of process grid size, with the
changes in memory usage matching (11).

B. Process Grid Dimensions and Performance

In this section, we study the impact of process grid
dimensions on the performance of COSMA and CA3DMM.
Table II shows the COSMA and CA3DMM runtime for
various problem dimensions with different process grid
dimensions. When using 2048 cores, COSMA chooses its
optimal process grid size for each problem dimension and
CA3DMM uses the same process grid. When using 3072
cores, a near-optimal process grid is specified for each problem
dimension. We also report the performance of both libraries
using their optimal process grids.

The timings in Table II show two remarkable points.
First, the performance of a PGEMM algorithm relies on
both the process grid dimensions and communication patterns
and operations. When using the same (optimal) process
grid, COSMA and CA3DMM have the same theoretical
communication size Q, but CA3DMM is up to 21%
faster than COSMA. Considering that COSMA has its
optimized collective operation implementation and CA3DMM
uses standard MPI functions, such performance differences
can only come from different communication patterns and
operations. Second, sub-optimal process grids may outperform
the optimal grids chosen by theoretical analysis due to the
cost of collective operations. For the large-K problem size,
CA3DMM is slower when using the theoretical optimal

process grid pm × pn × pk = 3 × 3 × 341 instead of a sub-
optimal grid pm×pn×pk = 4×2×384. The optimal process
grid uses 99.9% of the cores, so the computational resources
are well utilized. A runtime breakdown shows that the major
difference in timing comes from the cost of the reduce-scatter
operation. For collective operations, pk = 341 is unfavorable.

square

C
O
SM

A

C
A3D

M
M

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

la
ti
v
e

 R
u

n
ti
m

e
 (

C
O

S
M

A
 s

u
m

 =
 1

)

largeK

C
O
SM

A

C
A3D

M
M

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
largeM

C
O
SM

A

C
A3D

M
M

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
flat

C
O
SM

A

C
A3D

M
M

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5: COSMA and CA3DMM relative runtime breakdowns
for 2048-core tests in Table II. For each class of problems,
timings are normalized such that the total runtime of COSMA
equals 1. For CA3DMM, “replicate A, B” includes step 5
in Algorithm 1 and the cost of shifting A and B blocks in
Cannon’s algorithm.

Figure 5 further shows the relative runtime breakdowns
for 2048-core tests in Table II. COSMA and CA3DMM
have similar local computation and communication (sum of
“replicate A,B” and “reduce C”) costs in all problem classes.
Instead of organizing the 3D process grid in a fixed way
like CA3DMM, COSMA “crafts the binary reduction tree in
all three dimensions” of communications and has different
3D process grid organizations for different problem classes.
Therefore, the “reduce C” costs in COSMA are similar to or
smaller than that of CA3DMM in different cases, depending
on how close the MPI processes that reduce sum the partial C
results are placed on the hardware. The same comment applies
to the “replicate A, B” costs.

C. GPU Performance

We implement a CA3DMM GPU prototype by simply
offloading local matrix multiplications from CPUs to GPUs.
Table III compares the GPU performance of COSMA, CTF,
and our CA3DMM GPU prototype. The GPU part of these
three libraries are compiled using CUDA 10.2 and use
cuBLAS for local matrix multiplications. The maximum
number of GPUs we can use is 32, so we test the performance
using 16 and 32 GPUs. Since the numbers of MPI processes
are powers of two and are small, COSMA and CA3DMM
have the same or effectively the same 3D process grids

Number of Cores Problem Size COSMA CA3DMM
m,n, k (×103) pm, pn, pk Runtime (s) pm, pn, pk Runtime (s)

2048

50, 50, 50 8, 16, 16 2.65 8, 16, 16 2.46
6, 6, 1200 2, 2, 512 0.84 2, 2, 512 0.78
1200, 6, 6 512, 2, 2 0.82 512, 2, 2 0.82

100, 100, 5 32, 32, 2 1.03 32, 32, 2 1.02

3072

50, 50, 50 16, 16, 12 2.11 16, 16, 12 1.75
12, 16, 16 1.88

6, 6, 1200 4, 2, 384 0.61 4, 2, 384 0.54
2, 3, 512 0.59 3, 3, 341 0.62

1200, 6, 6 384, 4, 2 0.62 384, 4, 2 0.58
512, 2, 3 0.60

100, 100, 5 32, 32, 3 0.85 32, 32, 3 0.82
32, 48, 2 0.77 39, 39, 2 0.70

TABLE II: COSMA and CA3DMM runtime (seconds) for different problem dimensions with process grid dimensions. Reported
runtime values are averaged over ten runs. Both libraries use one CPU core per MPI rank and library-native matrix distributions.
Process grid sizes in italics are not the default optimal grid sizes chosen by the library.

Number of GPUs Problem Size COSMA CA3DMM CTF
m,n, k (×103) pm, pn, pk Runtime (s) pm, pn, pk Runtime (s) Runtime (s)

16

50, 50, 50 2, 2, 4 5.45 2, 2, 4 6.44 15.46
10, 10, 300 1, 1, 16 0.91 1, 1, 16 0.94 4.64
300, 10, 10 16, 1, 1 0.90 16, 1, 1 0.89 13.77
50, 50, 10 4, 4, 1 1.22 4, 4, 1 1.23 11.61

32

50, 50, 50 2, 4, 4 4.70 4, 2, 4 5.39 15.20
10, 10, 300 1, 1, 32 0.70 1, 1, 32 0.78 3.70
300, 10, 10 32, 1, 1 0.64 32, 1, 1 0.65 14.82
50, 50, 10 4, 8, 1 0.82 8, 4, 1 0.84 12.46

TABLE III: COSMA, CA3DMM, and CTF runtime (seconds) for different problem dimensions on GPUs. Reported runtime
values are averaged over ten runs. All libraries use one GPU per MPI rank and library-native matrix distributions.

in all problem settings. COSMA outperforms CA3DMM
on square and large-K problems where the k-dimension
reduction is needed. On square problems, the partial C
result block is larger than a threshold in MVAPICH2, which
degrades the performance of reduce-scatter. In the MPI +
OpenMP tests (Figure 4a), CA3DMM also has the same
performance issue, but it is less obvious since the total
runtime is larger. The MVAPICH2 user manual does not
list a related runtime environment variable. We leave the
optimization of the reduce-scatter step for future study. For flat
and large-M problems, COSMA and CA3DMM have almost
the same performance. The GPU acceleration of CTF is still
in development.

V. CONCLUSIONS AND OPEN PROBLEMS

In this work, we present the CA3DMM algorithm, a simple
and scalable parallel dense general matrix multiplication
algorithm based on a unified view of parallel matrix
multiplication. The unified view organizes a PGEMM
as multiple low-rank updates and parallelizes both the
calculations in each low-rank update and the computations of
different low-rank updates. This unified view generalizes 1D,
2D, and 3D algorithms in an intuitive way, which allows one
to understand and implement it easily. We prove CA3DMM
can achieve optimal or near-optimal communication cost with
extra memory for all matrix dimensions and any number of
processes. Numerical results show that CA3DMM can scale

to a large number of cores efficiently and the performance
of CA3DMM is comparable or better than state-of-the-art
communication-optimal PGEMM codes for a wide range of
problem dimensions and numbers of processes. The theoretical
analysis and experimental data also point to some future study
directions for CA3DMM.

The first topic for future study is controlling the
usage of extra memory in CA3DMM while minimizing
communication costs. (11) suggests two possible approaches.
The first approach is replacing Cannon’s algorithm with the
SUMMA algorithm. The SUMMA algorithm uses a tunable
broadcast block size b. The extra memory required for dual
buffering and overlapping communication with computation is
O(max(m/pm, n/pn)). This CA3DMM algorithm would be
simpler since neither the A matrix nor the B matrix would
need to be replicated before calling SUMMA. As discussed
in Section III-E, the communication pattern in SUMMA
is less preferable than that in Cannon’s algorithm, so the
SUMMA version is very likely to be slower in practice. The
second approach is reducing the number of k-task groups,
i.e., reducing the number of partial C matrix results. This
approach makes CA3DMM move toward 2D algorithms and
increases the communication size Q. These two approaches
can be applied together to further reduce the usage of extra
memory.

Another open question for CA3DMM is reducing matrix
distribution conversion costs in real-world applications.

Indeed, CARMA, COSMA, and CA3DMM all need to
address this issue since they all have library-native matrix
partitionings that are not easy to use directly by higher-level
driver algorithms. Real-world applications usually use natural
1D or 2D partitionings for matrices and process grids,
or block-cyclic 2D matrix partitioning for ScaLAPACK
or other distributed-memory linear algebra libraries. Two
example driver algorithms are the Rayleigh-Ritz step in
Chebyshev-filtered subspace iteration [8] and the repeated
matrix multiplications in density matrix purification [9]. As
Figure 3 shows, the cost of converting a distributed matrix to
a library-native distribution could be very high. Therefore, it is
essential to design library-native matrix partitionings or other
matrix partitionings that can help reduce the matrix layout
conversion cost.

CA3DMM is released in open-source form at https://
github.com/scalable-matrix/CA3DMM and is being integrated
into the distributed-memory large-scale real-space density
functional theory (DFT) program SPARC [32]. The need for
a high-performance PGEMM for various matrix dimensions
used in SPARC was the original motivation for developing
CA3DMM.

ACKNOWLEDGMENTS

The authors gratefully acknowledge funding from the U.S.
Department of Energy, grant DE-SC0019410. The authors
acknowledge the Partnership for an Advanced Computing
Environment (PACE) at the Georgia Institute of Technology
for providing HPC resources that have contributed to the
research results reported within this paper. The authors
also offer their thanks to Shikhar Shah for meaningful
discussions on the CA3DMM algorithm, Lucas Erlandson for
his assistance on testing CA3DMM and adopting CA3DMM
in the SPARC library, and Marko Kabić for his helpful
suggestions on testing the COSMA library.

REFERENCES

[1] C. D. Meyer, Matrix Analysis and Applied Linear
Algebra. USA: Society for Industrial and Applied
Mathematics, 2000.

[2] N. J. Higham, Functions of Matrices: Theory and
Computation. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 2008.

[3] Y. Saad, Numerical Methods for Large Eigenvalue
Problems. Society for Industrial and Applied
Mathematics, 2011. [Online]. Available: https:
//epubs.siam.org/doi/abs/10.1137/1.9781611970739

[4] A. Azad, A. Buluç, and J. Gilbert, “Parallel triangle
counting and enumeration using matrix algebra,” in 2015
IEEE International Parallel and Distributed Processing
Symposium Workshop, 2015, pp. 804–811.

[5] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti,
J. Gilbert, D. Hutchison, M. Kumar, A. Lumsdaine,
H. Meyerhenke, S. McMillan, C. Yang, J. D. Owens,
M. Zalewski, T. Mattson, and J. Moreira, “Mathematical
foundations of the GraphBLAS,” in 2016 IEEE High

Performance Extreme Computing Conference (HPEC),
2016, pp. 1–9.

[6] R. A. Kendall and H. Fruchtl, “The impact of the
resolution of the identity approximate integral method on
modern Ab-initio algorithm development,” Theoretical
Chemistry Accounts, vol. 97, Oct. 1997. [Online].
Available: https://www.osti.gov/biblio/1783269

[7] A. H. R. Palser and D. E. Manolopoulos, “Canonical
purification of the density matrix in electronic-structure
theory,” Physical Review B, vol. 58, no. 19, pp.
12 704–12 711, Nov. 1998. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevB.58.12704

[8] Y. Zhou, Y. Saad, M. L. Tiago, and J. R.
Chelikowsky, “Self-consistent-field calculations using
Chebyshev-filtered subspace iteration,” Journal of
Computational Physics, vol. 219, no. 1, pp. 172–
184, Nov. 2006. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S002199910600146X

[9] X. Liu, A. Patel, and E. Chow, “A new scalable
parallel algorithm for Fock matrix construction,” in
2014 IEEE 28th International Parallel and Distributed
Processing Symposium. Phoenix, AZ, USA: IEEE,
May 2014, pp. 902–914. [Online]. Available: http:
//ieeexplore.ieee.org/document/6877321/

[10] J.-W. Hong and H.-T. Kung, “I/O complexity: The
red-blue pebble game,” ser. STOC ’81. New York,
NY, USA: Association for Computing Machinery, 1981,
p. 326–333. [Online]. Available: https://doi.org/10.1145/
800076.802486

[11] D. Irony, S. Toledo, and A. Tiskin, “Communication
lower bounds for distributed-memory matrix
multiplication,” Journal of Parallel and Distributed
Computing, vol. 64, no. 9, pp. 1017–1026,
2004. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0743731504000437

[12] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz,
“Minimizing communication in numerical linear
algebra,” SIAM Journal on Matrix Analysis and
Applications, vol. 32, no. 3, pp. 866–901, 2011.
[Online]. Available: https://doi.org/10.1137/090769156

[13] G. Ballard, E. E. Carson, J. Demmel, M. Hoemmen,
N. Knight, and O. Schwartz, “Communication lower
bounds and optimal algorithms for numerical linear
algebra,” Acta Numerica, vol. 23, p. 1–155, 2014.

[14] R. A. van de Geijn and J. Watts, “SUMMA: scalable
universal matrix multiplication algorithm,” Concurrency:
Practice and Experience, vol. 9, pp. 255–274, 1997.

[15] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi,
and P. Palkar, “A three-dimensional approach to parallel
matrix multiplication,” IBM Journal of Research and
Development, vol. 39, no. 5, pp. 575–582, 1995.

[16] E. Solomonik and J. Demmel, “Communication-optimal
parallel 2.5D matrix multiplication and LU factorization
algorithms,” in Euro-Par 2011 Parallel Processing.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp.
90–109.

[17] J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz,
O. Schwartz, and O. Spillinger, “Communication-optimal
parallel recursive rectangular matrix multiplication,” in
2013 IEEE 27th International Symposium on Parallel
and Distributed Processing. Cambridge, MA, USA:
IEEE, May 2013, pp. 261–272. [Online]. Available:
http://ieeexplore.ieee.org/document/6569817/

[18] G. Kwasniewski, M. Kabić, M. Besta, J. VandeVondele,
R. Solcà, and T. Hoefler, “Red-blue pebbling revisited:
near optimal parallel matrix-matrix multiplication,”
in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis. Denver, CO, USA: ACM, Nov. 2019, pp. 1–
22.

[19] L. E. Cannon, “A cellular computer to implement the
Kalman filter algorithm,” Ph.D. dissertation, Montana
State University, USA, 1969.

[20] J. Choi, D. W. Walker, and J. J. Dongarra, “PUMMA:
Parallel universal matrix multiplication algorithms
on distributed memory concurrent computers,”
Concurrency: Practice and Experience, vol. 6, no. 7,
pp. 543–570, Oct. 1994. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/10.1002/cpe.4330060702

[21] J. Choi, J. J. Dongarra, R. Pozo, and D. W.
Walker, “ScaLAPACK: a scalable linear algebra library
for distributed memory concurrent computers,” in
[Proceedings 1992] The Fourth Symposium on the
Frontiers of Massively Parallel Computation. McLean,
VA, USA: IEEE Comput. Soc. Press, 1992, pp. 120–127.
[Online]. Available: http://ieeexplore.ieee.org/document/
234898/

[22] M. Gates, J. Kurzak, A. Charara, A. YarKhan,
and J. Dongarra, “SLATE: Design of a modern
distributed and accelerated linear algebra library,”
in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis, ser. SC ’19. New York, NY, USA: Association
for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3295500.3356223

[23] E. Solomonik, E. Carson, N. Knight, and J. Demmel,
“Trade-offs between synchronization, communication,
and computation in parallel linear algebra computations,”
ACM Transactions on Parallel Computing, vol. 3, no. 1,
Jan. 2017. [Online]. Available: https://doi.org/10.1145/
2897188

[24] E. Solomonik, D. Matthews, J. Hammond, and
J. Demmel, “Cyclops tensor framework: Reducing
communication and eliminating load imbalance in
massively parallel contractions,” in 2013 IEEE 27th
International Symposium on Parallel and Distributed
Processing, 2013, pp. 813–824.

[25] V. Strassen, “Gaussian elimination is not optimal,”
Numerische Mathematik, vol. 13, no. 4, pp. 354–356,
Aug. 1969. [Online]. Available: https://doi.org/10.1007/
BF02165411

[26] H.-J. Lee, J. P. Robertson, and J. A. B. Fortes,

“Generalized Cannon’s algorithm for parallel matrix
multiplication,” in Proceedings of the 11th International
Conference on Supercomputing, ser. ICS ’97. New
York, NY, USA: Association for Computing Machinery,
1997, p. 44–51. [Online]. Available: https://doi.org/10.
1145/263580.263591

[27] R. Thakur, R. Rabenseifner, and W. Gropp,
“Optimization of collective communication operations in
MPICH,” Int. J. High Perform. Comput. Appl., vol. 19,
no. 1, p. 49–66, Feb. 2005.

[28] Y. Nakatsukasa and N. J. Higham, “Stable and
efficient spectral divide and conquer algorithms for the
symmetric eigenvalue decomposition and the SVD,”
SIAM Journal on Scientific Computing, vol. 35, no. 3,
pp. A1325–A1349, Jan. 2013. [Online]. Available:
http://epubs.siam.org/doi/10.1137/120876605

[29] S. Das, P. Motamarri, V. Gavini, B. Turcksin,
Y. W. Li, and B. Leback, “Fast, scalable and
accurate finite-element based Ab-initio calculations
using mixed precision computing: 46 PFLOPS
simulation of a metallic dislocation system,”
in Proceedings of the International Conference
for High Performance Computing, Networking,
Storage and Analysis. Denver, Colorado: ACM
Press, 2019, pp. 1–11. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3295500.3357157

[30] T. Fukaya, R. Kannan, Y. Nakatsukasa, Y. Yamamoto,
and Y. Yanagisawa, “Shifted Cholesky QR for computing
the QR factorization of ill-conditioned matrices,” SIAM
Journal on Scientific Computing, vol. 42, no. 1, pp.
A477–A503, 2020.

[31] H. Huang and E. Chow, “Overlapping communications
with other communications and its application to
distributed dense matrix computations,” in 2019 IEEE
33rd International Parallel and Distributed Processing
Symposium. Rio de Janeiro, Brazil: IEEE, May 2019,
pp. 501–510. [Online]. Available: https://ieeexplore.ieee.
org/document/8821006/

[32] Q. Xu, A. Sharma, B. Comer, H. Huang, E. Chow,
A. J. Medford, J. E. Pask, and P. Suryanarayana,
“SPARC: Simulation package for Ab-initio real-
space calculations,” SoftwareX, vol. 15, p. 100709,
2021. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S2352711021000546

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
1. Abstract

This description contains the information needed to compile and
launch the computational experiments in the SC22 paper submis-
sion "CA3DMM: A New Algorithm Based on A Unified View of
Parallel Matrix Multiplication". We describe how to compile the
CA3DMM library and example programs and run the experiments
in Section VI in the submitted paper.

2. Artifact description
2.1 Artifact meta information

• Algorithm: Communication-Avoiding 3D Matrix Multiplica-
tion

• Program: Example parallel matrix multiplication program
provided in the CA3DMM library

• Compilation: Intel C/C++ compilers version 19, an MPI-3
supported MPI library and a BLAS library with a C language
interface

• Binary: MPI executable
• Data set: Not needed
• Run-time environment: Linux environment with MPI
• Hardware: Intel CPU and NVIDIA GPU
• Output: On-screen output: runtime and correctness check
• Publicly available?: Yes

2.2 How delivered
Intel Parallel Studio XE including Intel C/C++ compile, In-

tel MPI, and Intel MKL. Licenses can be applied with an edu-
cation email account or for trial. For MPI-3 supported MPI li-
braries, the source code of MPICH, MVAPICH2, and OpenMPI
can be downloaded from their official websites and compiled us-
ing Intel compilers. CA3DMM source code can be cloned from
https://github.com/scalable-matrix/CA3DMM.git. MPICH, MVA-
PICH2, and OpenMPI can also be installed using the Spack package
manager: https://github.com/spack/spack.

2.3 Hardware dependencies
For CPU-only results, no hardware dependency. We used Intel

Xeon Gold 6226 12-core CPU and Mellanox 100 Gbps IB network
for reproducibility. For GPU results, NVIDIA GPU is required.

2.4 Software dependencies
CA3DMM requires a C11 compliant compiler, an MPI-3 sup-

ported MPI library and a BLAS library with a C language interface.
We tested the Intel C compiler and Intel MKL in Intel Parallel Studio
XE 2019 update 4, and MVAPICH2 2.3.2. We suggest using MVA-
PICH2 for clusters with IB networking and using vendor-optimized
MPI libraries on supercomputers.

2.5 Datasets
The experiments in the paper use randomly generated general

non-zero matrices.
3. Compilation
Clone the CA3DMM library from GitHub:

git clone https://github.com/scalable-matrix/CA3DMM.git

Enter directory CA3DMM/src. CA3DMM provides four make files
in CA3DMM/src:

• icc-mkl-impi.make: Use Intel C compiler, Intel MKL, and
Intel MPI library

• icc-mkl-anympi.make: Use Intel C compiler, Intel MKL, and
any MPI library

• icc-mkl-nvcc-impi.make: Use Intel C compiler, Intel MKL,
NVCC compiler for NVIDIA GPU support, and Intel MPI
library

• icc-mkl-nvcc-anympi.make: Use Intel C compiler, Intel MKL,
NVCC compiler for NVIDIA GPU support, and any MPI
library

We use the icc-mkl-anympi.make and icc-mkl-nvcc-anympi.make
make files for compiling the CPU and GPU versions on the Georgia
Tech PACE-Phoenix cluster. Run the following command to compile
the CA3DMM library:
make -f icc-mkl-anympi.make -j

After compilation, the dynamic and static library files are copied
to the directory CA3DMM/lib, and the C header files are copied
to CA3DMM/include. Enter directory CA3DMM/examples to com-
pile the example program. This directory also contains four make
files similar to the make files in CA3DMM/src. Run the following
command to compile the CA3DMM library:
make -f icc-mkl-anympi.make -j

The compiled example program we need is
CA3DMM/examples/example_AB.exe.

4. Experiment workflow
For single node execution or launching on clusters without a

job scheduling system, the following command should run on most
platforms (assuming that you are in directory CA3DMM/examples):
mpirun -np <nprocs> ./example_AB.exe <M> <N> <K>

<transA> <transB> <validation> <ntest> <dtype>
<mp> <np> <kp>

Where:
• nprocs: Number of MPI processes
• M, N, K: Sizes of input matrices, A matrix is𝑀 ×𝐾 , B matrix
is 𝐾 × 𝑁

• transA, transB: 0 or 1, 0 for no transpose, 1 for transpose
• validation: 0 or 1, 0 for skipping result correctness check, 1
for result correctness check

• ntest: Number of tests to run, should be a non-negative inte-
ger

• dtype: Calculation device type, 0 for CPU, 1 for NVIDIA GPU
(if the library and the example program are compiled with
NVIDIA GPU support)

• mp, np, kp: Optional, the 3D process grid size, mp * np * kp
should <= nprocs

To explicitly control MPI + OpenMP hybrid parallelization, you
need to specify OpenMP environment variables, and process affinity
environment variables for some MPI libraries. In the paper, we use

Huang, et al.

the following environment variables for MPI + OpenMP parallel
tests on the Georgia Tech PACE-Phoenix cluster:
OMP_PLACES=cores
OMP_NUM_THREADS=24
MV2_CPU_BINDING_POLICY=hybrid
MV2_THREADS_PER_PROCESS=24

For clusters and supercomputers with job scheduling systems like
slurm, you need to write job scripts for launching the example
program on multiple nodes. We provide three PBS job scripts in the
directory CA3DMM/examples for running on the PACE-Phoenix
cluster:

• phoenix-64node-mpi.pbs: MPI only parallelization, 1 CPU
core per MPI rank, 64 nodes

• phoenix-64node-mpiomp.pbs: MPI + OpenMP parallelization,
24 CPU core per MPI rank, 1 MPI rank per node, 64 nodes

• phoenix-16node-GPU.pbs: MPI + GPU parallelization, 1
NVIDIA GPU device per MPI rank, 2 MPI ranks per node, 16
nodes

5. Expected results
The example program prints timing results to the screen output.

Here is an example output on a single node using 1 core per MPI
process:
$ mpirun -np 24 ./example_AB.exe 8000 8000 8000 0 0 1 10 0
Test problem size m * n * k : 8000 * 8000 * 8000
Transpose A / B : 0 / 0
Number of tests : 10
Check result correctness : 1
Device type : 0

CA3DMM partition info:
Process grid mp * np * kp : 4 * 2 * 3
Work cuboid mb * nb * kb : 2000 * 4000 * 2667
Process utilization : 100.00 %
Comm. volume / lower bound : 1.04
Rank 0 work buffer size : 244.28 MBytes

A, B, C redist : 80 79 77 79 80 77 82 78 78 77
A / B allgather : 16 16 16 16 16 16 16 16 16 16
2D Cannon : 649 649 667 665 664 667 666 666 667 667
C reduce-scatter : 41 42 42 51 43 42 41 42 42 41
matmul only : 706 708 725 733 724 725 724 724 725 725
total execution : 786 786 802 812 803 802 806 802 803 801

================ CA3DMM algorithm engine ===============
* Initialization : 4.89 ms
* Number of executions : 10
* Execution time (avg) : 800.46 ms

* Redistribute A, B, C : 78.74 ms
* Allgather A or B : 16.30 ms
* 2D Cannon execution : 662.62 ms
* Reduce-scatter C : 42.79 ms

------------- 2D Cannon algorithm engine -------------
* Initialization : 0.04 ms
* Number of executions : 10
* Execution time (avg) : 662.62 ms

* Initial shift : 33.79 ms
* Loop shift wait : 23.21 ms
* Local DGEMM : 605.62 ms

* Per-rank performance : 64.40 GFlops
--
==
CA3DMM output : 0 error(s)

The example program uses a 1D column partition for the input A
and B matrices and the output C matrix. The "Process grid" line
shows the 3D process grid size. The "matmul only" line gives the
runtime (in milliseconds) using library-native matrix partitioning.

6. Reproducing experiment results in the paper
The SC22_AD directory contains all scripts and detailed instruc-

tions for reproducing all experiment results in the paper. Please
follow the instructions in readme.md in this folder.

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: https://doi.org/10.5281/zenodo.6929079
Artifact name: Communication-Avoiding 3D Matrix Multiplication

Reproduction of the artifact without container: The program re-
quires an optimized MPI library, which is not suitable for using
container images. Meanwhile, compiling the source code is very
easy on HPC clusters.

